Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 147: 105562, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190935

RESUMO

Serendipity berry plant (Dioscoreophyllum cumminsii (Stapf) Diels) is the source of a naturally sweet protein referred to as monellin. The safety of serendipity berry sweet protein (SBSP) containing single polypeptide monellin (MON) expressed in Komagataella phaffii (formerly Pichia pastoris) and produced via precision fermentation was examined comprehensively through assessments of in vitro and in silico protein digestion, in silico allergenicity, in vitro genotoxicity (reverse mutation and mammalian micronucleus assays), and 14-day and 90-day oral (dietary) toxicity studies in rats. There was no indication of allergenicity for SBSP in the in silico analyses. Results from both in vitro and in silico protein digestibility assessments indicated that SBSP is digested upon ingestion and would therefore be unlikely to pose a toxigenic or allergenic risk to consumers. SBSP was non-genotoxic in in vitro assays and showed no adverse effects in the 14-day or 90-day toxicity studies up to the highest dose tested. The 90-day toxicity study supports a NOAEL for SBSP of 1954 mg/kg bw/day, which corresponds to a NOAEL for MON of 408 mg/kg bw/day.


Assuntos
Frutas , Plantas , Saccharomycetales , Ratos , Animais , Proteínas de Plantas/genética , Mamíferos
2.
Food Chem Toxicol ; 184: 114428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163454

RESUMO

Spermidine is a polyamine consumed in the diet, endogenously biosynthesized in most cells, and produced by the intestinal microbiome. A variety of foods contribute to intake of spermidine along with other polyamines. Spermidine trihydrochloride (spermidine-3HCl) of high purity can be produced using an engineered strain of Saccharomyces cerevisiae. Spermidine has a demonstrated history of safe use in the diet; however, limited information is available in the public literature to assess the potential toxicity of spermidine-3HCl. To support a safety assessment for this spermidine-3HCl as a dietary source of spermidine, authoritative guideline and good laboratory practice (GLP) compliant in vitro genotoxicity assays (bacterial reverse mutation and mammalian micronucleus assays) and a 90-day oral (dietary) toxicity study in rats were conducted with spermidine-3HCl. Spermidine-3HCl was non-genotoxic in the in vitro assays, and no adverse effects were reported in the 90-day oral toxicity study up to the highest dose tested, 12500 ppm, equivalent to 728 mg/kg bw/day for males and 829 mg/kg bw/day for females. The subchronic no observed adverse effect level (NOAEL) is 728 mg/kg bw/day.


Assuntos
Saccharomyces cerevisiae , Espermidina , Masculino , Feminino , Ratos , Animais , Espermidina/toxicidade , Saccharomyces cerevisiae/genética , Nível de Efeito Adverso não Observado , Testes para Micronúcleos , Mamíferos , Testes de Mutagenicidade
3.
Food Chem Toxicol ; 184: 114352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081535

RESUMO

4-(2-Hydroxyethyl) morpholine (HEM) is widely used as a building block of macromolecules in the manufacture of pharmaceuticals and dietary supplements and could remain as an impurity in the finished products. An evaluation of HEM was conducted to identify endpoints that could be used to determine the point-of-departure (POD) for use in assessing the potential risk from exposure to HEM. No oral repeated dose toxicological studies of appropriate duration were found for HEM. Therefore, suitable analogue(s) were identified. Although oral repeated dose studies were available for the analogues, the studies were not of sufficient duration for use in the assignment of a POD for risk evaluation. Accordingly, the Threshold of Toxicological Concern (TTC) approach, which proposes that a de minimis value can be derived to qualitatively assess risk, was considered for HEM. To determine the appropriate TTC approach (genotoxic or non-genotoxic), the genotoxicity of HEM and its analogues were evaluated. The weight of the evidence indicated that HEM, and the appropriate analogues, are not genotoxic. Considering the chemical structure of HEM, the non-genotoxic Cramer class III TTC value of 1.5 µg/kg bw/day was determined to be appropriate for use in safety assessment of HEM as an impurity in products intended for human consumption.


Assuntos
Dano ao DNA , Suplementos Nutricionais , Humanos , Medição de Risco , Suplementos Nutricionais/toxicidade , Morfolinas/toxicidade , Preparações Farmacêuticas
4.
Integr Environ Assess Manag ; 19(4): 1089-1109, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36597818

RESUMO

The toxicity and ecotoxicity of pesticide active ingredients are evaluated by a number of standardized test methods using vertebrate animals. These standard test methods are required under various regulatory programs for the registration of pesticides. Over the past two decades, additional test methods have been developed with endpoints that are responsive to endocrine activity and subsequent adverse effects. This article examines the available test methods and their endpoints that are relevant to an assessment of endocrine-disrupting properties of pesticides. Furthermore, the article highlights how weight-of-evidence approaches should be applied to determine whether an adverse response in (eco)toxicity tests is caused by an endocrine mechanism of action. The large number of endpoints in the current testing paradigms for pesticides make it unlikely that endocrine activity and adversity is being overlooked. Integr Environ Assess Manag 2023;19:1089-1109. © 2023 Bayer CropScience and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Disruptores Endócrinos , Praguicidas , Animais , Animais Selvagens , Praguicidas/toxicidade , Disruptores Endócrinos/toxicidade , Medição de Risco/métodos , Vertebrados , Ecotoxicologia/métodos
5.
Ecotoxicol Environ Saf ; 207: 111458, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254383

RESUMO

Nanotechnology has increasing applications in numerous markets, particularly in additive processing (3D printing) and manufacturing, which is important for consumer products, medical devices, construction, and general research and development across many other industries. Nanomaterials are desirable in many products due to their unique properties, but those same properties have made evaluating the risk and regulation of these materials challenging. For risk-based regulations, new applications and nanomaterials should be assessed for both human and environmental hazards and exposure to ensure protection. In general, many risk assessments to date have focused on the non-nano versions of chemicals. The lack of guidance on assessing the hazard and exposure of nanomaterials in 3D printing is apparent, and these areas of assessment are actively being evaluated. Industry in most cases will now need to provide specific additional information for assessing the risk of nanomaterials in 3D printing. This review paper focuses on the use of nanomaterials in 3D printing for industrial and manufacturing applications, summarizes the current literature on human health and safety related to 3D printing and inhalation exposure, and the regulations relating to 3D printing in the U.S., Canada, and Europe for this industry.


Assuntos
Política Ambiental/legislação & jurisprudência , Nanotecnologia , Impressão Tridimensional , Canadá , Europa (Continente) , Humanos , Indústrias , Nanoestruturas , Medição de Risco
6.
Environ Toxicol Chem ; 39(4): 739-753, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030793

RESUMO

Recent regulatory testing programs have been designed to evaluate whether a chemical has the potential to interact with the endocrine system and could cause adverse effects. Some endocrine pathways are highly conserved among vertebrates, providing a potential to extrapolate data generated for one vertebrate taxonomic group to others (i.e., biological read-across). To assess the potential for biological read-across, we reviewed tools and approaches that support species extrapolation for fish, amphibians, birds, and reptiles. For each of the estrogen, androgen, thyroid, and steroidogenesis (EATS) pathways, we considered the pathway conservation across species and the responses of endocrine-sensitive endpoints. The available data show a high degree of confidence in the conservation of the hypothalamus-pituitary-gonadal axis between fish and mammals and the hypothalamus-pituitary-thyroid axis between amphibians and mammals. Comparatively, there is less empirical evidence for the conservation of other EATS pathways between other taxonomic groups, but this may be due to limited data. Although more information on sensitive pathways and endpoints would be useful, current developments in the use of molecular target sequencing similarity tools and thoughtful application of the adverse outcome pathway concept show promise for further advancement of read-across approaches for testing EATS pathways in vertebrate ecological receptors. Environ Toxicol Chem 2020;39:739-753. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Ecotoxicologia/métodos , Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Modelos Biológicos , Vertebrados/metabolismo , Rotas de Resultados Adversos , Animais , Ecotoxicologia/legislação & jurisprudência , Disruptores Endócrinos/sangue , Disruptores Endócrinos/farmacocinética , Sistema Endócrino/metabolismo , Regulamentação Governamental , Ligantes , Ligação Proteica , Medição de Risco , Especificidade da Espécie , Vertebrados/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...